Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Диплом 2002.doc
Скачиваний:
139
Добавлен:
10.12.2013
Размер:
2.08 Mб
Скачать

4.1. Семиуровневая модельOsi

4.1.1. Обоснование модели osi

Для обеспечения обмена данными между компьютерными сетями Международная организация по стандартизации (ISO) совместно с Международным консультативным комитетом по телеграфии и телефонии (CCITT) разработала многоуровневый комплект протоколов, известный как эталонная модель взаимосвязи открытых систем (модель OSI). Одна из основных идей модели OSI — в недалеком будущем обеспечить относи­тельно легкий и простой обмен информацией при использовании изготовленных разными фирмами аппаратных и программных средств, соответствующих стандартам OSI. Конечные пользователи должны забыть о проблемах совместимости, которые все еще свойственны системам, включающим устройства различных производителей.

На рис. 3.1. показано, как многоуровневые протоколы, входящие в состав модели OSI, обеспечивают передачу информации с одного компьютера на другой. Отметим, что на каждом уровне, кроме физического, добавляется заголовок, содержащий управляющую информацию для соответствующего уровня на другом компьютере. На канальном уровне добавляется даже концевик с дополнительной управляющей информацией. Управляющая информация в заголовках и концевиках содержит такие основные данные, как тип передаваемой информации (будет ли она, например, содержать числа с плавающей запятой), адреса станции-отправителя и станции-по­лучателя, режим передачи (дуплексный, полудуплексный и т.д.), метод кодирования информации (ЕВС01С, А5С11 и т.д.), метод контроля ошибок. После того как второй компьютер примет эту информацию в виде потока битов, они будут вновь собраны в кадры. В процессе обработки кадра протоколами соответствующие уровни будут удалять предназначенную для них управляющую информацию, и в конечном итоге прикладная программа получит только исходные данные.

Рис.4.1. Модель OSI.

4.1.2. Уровни модели osi

Отдельные уровни модели OSIудобно рассматривать как группы программ, предназначенных для выполнения конкретных функций. Один уровень, к примеру, отвечает за обеспечение преобразования данных из А5С11 в ЕВС01С и содержит программы, необходимыедлявыполнения этой задачи. Программы могут содержать отдельные модули, известные в моделиOSIкакобъекты (entities).Каждый уровень обеспечивает сервис для вышестоящего уровня, запрашивая, в свою очередь, сервис у нижестоящего уровня. Верхние уровни запрашивают сервис почти одинаково: как правило, это требо­вание маршрутизации каких-то данных из сети А в сеть В. Практическая реализация принципов адресации данных, необходимой для правильной их маршрутизации, возложена на нижние уровни. Связь между уровнями осуществляется в форме различных транзакций, известных какпримитивы (primitives).

Примитивы

Примитивы подразделяются на примитивы запроса, индикации, ответа и под­тверждения. Уровень, выступающий в роли пользователя сервиса, может активизи­ровать функцию путем выдачи запроса на действие, например, на шифрование данных. Уровень, играющий роль поставщика сервиса, выдаст подтверждение, ука­зывающее на то, что функция выполнена ("да, данные зашифрованы"). Иногда выдается запрос на действие, которое должен выполнить уровень на втором компь­ютере. Соответствующий уровень на втором компьютере получает данный запрос как примитив индикации и отвечает на него выдачей примитива ответа, который инфор­мирует уровень на первом компьютере о том, что затребованная функция выполнена.

Эти примитивы удобно рассматривать как управляющую информацию, которая представлена в виде определенных битовых комбинаций в кадрах, передаваемых в процессе обмена данными. Метод, с помощью которого модель OSIобеспечивает обмен между сетями передачи данных, используя такую систему примитивов для ретрансляции управляющей информации, непосредственно применим к процессу взаимодействия рабочих станций в локальных сетях.

Прикладной уровень

В модели OSI прикладная программа, которой нужно выполнить конкретную задачу (например, обновить базу данных на компьютере В), посылает конкретные данные в виде дейтаграммы на прикладной уровень. Одна из основных "обязанно­стей" этого уровня — определить, как следует обрабатывать запрос прикладной программы, другими словами — какой вид должен принять данный запрос. Если в запросе прикладной программы определен, например, дистанционный ввод заданий, то это потребует работы нескольких программ, которые будут собирать информацию, организовывать ее, обрабатывать и посылать по соответствующему адресу. Еще одна существенно важная функция прикладного уровня — электронная почта., которая, разрушая барьеры между разнородными сетями, превращается в систему глобальных коммуникаций.

Прикладной уровень, кроме того. содержит несколько так называемых общих элементов прикладного сервиса (ACSE—Applica­tionCommonServiceElements) и специальных элементов прикладного сервиса (SASE—SpecificApplicationServiceElements). СервисыACSEпредоставляются прикладным процессам во всех системах. Они включают, например, требование определенных параметров качества сервиса.

Допустим, необходимо установить связь через модем по глобальной сети между рабочей станцией локальной сети в Лос-Анджелесе и мэйнфреймом в Бостоне. Поскольку качество телефонной линии иногда оказывается неудовлетворительным, прикладной процесс, работающий в ЛВС, может запросить такое качество сервиса, которое предусматривает подтверждение приема и распознавания информации.

(Если провести аналогию с почтой, то указанное действие равносильно требованию, чтобы доставка вашей посылки была подтверждена квитанцией.)

Специальные элементы прикладного сервиса (SASE) обеспечивают сервис для конкретных прикладных программ, таких как программы пересылки файлов и эмуляции терминалов. Если, например, прикладной программе необходимо пере­слать файлы, то обязательно будет использован протокол передачи, доступа и управления файлами (РТАМ — FileTransfer,Access,andManagement), являющийся одним из ключевых протоколов прикладного уровня.

Давайте на минутку заглянем в будущее, когда локальные сети и мэйнфреймы станут работать с OSI-совместимым программным обеспечением. Поскольку РТАМ работает как виртуальный банк файлов и имеет собственную службу каталогов, то программы смогут получать доступ к базам данных, не имея информации о факти­ческом местонахождении файла. Поскольку РТАМ поддерживает широкое разнооб­разие различных типов структур, включая последовательную, упорядоченную иерархическую и общую иерархическую, то информация из базы данных, располо­женной на удаленном Unisys-компьютере, будет использоваться для обновления другой базы данных, работающей в локальной сети в Лос-Анджелесе. Данные из первой базы, в свою очередь, будут обновляться на основе информации, взятой из третьей базы данных, размешенной на IBM-мэйнфрейме в Финиксе.

Еще одна важная составляющая SASE прикладного уровня — сервис виртуального терминала (VT—VirtualTerminal).VT— это сложный сервис, который освобождает компьютер от необходимости посылать соответствующие сигналы для обращения ко всем терминалам, подключенным ко второму компьютеру. Первый компьютер может использовать набор параметров виртуального терминала, а решение вопросов кон­кретизации конфигурации терминалов предоставить второму компьютеру.

На разных этапах разработки находятся еще несколько SASE: обработка транзак­ций, электронный обмен данными (EDI—ElectronicDataInterchange), передача и обработка заданий (JTM—JobTransferandManipulation). Разработка стандартаOSIна EDI, в частности, очень важна для пользователей ЛВС. Например, на рабочей станции ЛВС можно составить заказ на покупку и передать эту информацию по сети непосредственно изготовителю или продавцу, где данные будут автоматически вне­сены в счет-фактуру. Можно проверять и автоматически корректировать инвентари­зационные ведомости, можно заключать договора на поставку товаров — и все это без бумаг и волокиты.

Функции управления сетями на прикладном уровне. По мере усложнения инфор­мационных сетей вопрос административного управления ими приобретает все боль­шее значение. Поскольку сейчас любые системы передачи информации позволяют обрабатывать и передавать также и речевые данные, а локальные сети все теснее связываются с глобальными сетями и мэйнфреймами, го все очевиднее необходи­мость в разработке эффективного метода организации этой информации и управле­ния ею. Фирма IBMв качестве решения предложила свои системыNetViewиNetView/PC,aHewlett-Packardвышла на рынок с пакетом прикладных программOpenView.

На сегодняшний день проблема заключается в том, что при наличии нескольких решений нет международного стандарта по управлению сетями. Для прикладного уровня модели OSI существует несколько спецификаций информационно-управляю­щих протоколов, которые претендуют на то, чтобы в будущем стать международными стандартами.

Уровень представления данных

Уровень представления данных отвечает за физическое отображение (представ­ление) информации. Так, в полях базы данных информация должна быть представ­лена в виде букв и цифр, а зачастую— и графических изображений. Обрабатывать же эти данные нужно, например, как числа с плавающей запятой.

Уровень представления данных обеспечивает возможность передачи данных с гарантией, что прикладные процессы, осуществляющие обмен информацией, смогут преодолеть любые синтаксические различия. Для того чтобы обмен имел место, эти два процесса должны использовать общее представление данных, или язык.

Важность уровня представления данных заключается в том, что в основу его работы положена единая для всех уровней модели OSIсистема обозначений для описания абстрактного синтаксиса —ASN.I. Эта система служит для- описания структуры файлов. На прикладном уровне система ASN.I применяется и для выпол­нения всех операций пересылки файлов, и при работе с виртуальным терминалом. Использование этой системы позволяет также решить одну из важнейших проблем, возникающих при управлении крупными сетями — проблему шифрования данных. Шифрование данных с помощью ASN.I можно выполнять на уровне представления данных. Разработка стандарта OSI для этого уровня окажет значительное влияние на обеспечение межмашинной связи.

Сеансовый уровень

Представьте себе опытного администратора, отвечающего за подготовку и согла­сование всех деталей предстоящей важной встречи двух высокопоставленных руко­водителей. Если он действует правильно, встреча проходит четко и организованно. Так и работа сеансового уровня обеспечивает проведение сеанса и, в конечном итоге, обмен информацией между двумя прикладными процессами.

Сеансовый уровень отвечает за такие серьезные вопросы, как режим передачи и установка точек синхронизации. Иными словами, на этом уровне определяется, какой будет передача между двумя прикладными процессами: полудуплексной (про­цессы будут передавать и принимать данные по очереди) или дуплексной (процессы будут передавать и принимать данные одновременно). В полудуплексном режиме сеансовый уровень выдает тому процессу, который первым начинает передачу, маркер данных. Когда второму процессу приходит время отвечать, маркер данных передается ему. Сеансовый уровень, таким образом, разрешает передачу только той стороне, которая обладает маркером данных.

Синхронизирующие точки представляют собой точки внутри "диалога", в кото­рых сеансовый уровень проверяет наличие фактического обмена. Если вы когда-ни­будь наблюдали, как беседуют два японских бизнесмена, вы наверняка обратили внимание, что они все время кивают и говорят ''хай". Это не значит, что бизнесмены соглашаются друг с другом; они просто показывают, что слышат и понимают, что говорит собеседник, потому что "хай" по-японски означает "да".

Еще одна функция сеансового уровня модели OSI заключается в решении вопроса о восстановлении связи в случае ее нарушения. Например, логично было бы ставить точки синхронизации между страницами текста и в случае нарушения связи начинать передачу с последней синхронизирующей точки. Таким образом, для восстановления сеанса не нужно будет начинать все сначала и повторять передачу текста, который уже принят правильно.

Сеансовый уровень, кроме того, отвечает за детали, связанные с упорядоченным ("плавным") завершением соединения в конце сеанса. Могут возникнуть и ситуации, когда требуется безусловное ("резкое") завершение. Это необходимо в тех случаях, когда одна из сторон прекращает обмен и отказывается с этого момента принимать данные.

Сеансовый уровень обрабатывает не все запросы на соединения. Он может выдать примитив отказа qt соединения, если определит, что соединение приведет к пере­грузке сети или затребованный прикладной процесс отсутствует.

Транспортный уровень

Транспортный уровень имеет большое значение для пользователей компьютер­ных сетей, так как именно он определяет качество сервиса, которое требуется обеспечить посредством сетевого уровня. Для того чтобы лучше понять функции транспортного уровня, представим его как аналогию набора специальных услуг, которые местное почтовое отделение предоставляет клиентам за дополнительную плату. Например, заплатив некоторую сумму, клиент может получить квитанцию о том, что письмо доставлено по указанному им адресу. Можно заказать срочную доставку, если клиент желает, чтобы его посылка пришла в Бостон на следующий день. Плату за эти дополнительные высококачественные услуги почтовое ведомство США взимает с клиентов деньгами, а для пользователя сети, работающего с OSI-coвместимыми аппаратными и программными средствами, эта плата выражается в допол­нительных битах, необходимых для предоставления информации о статусе возможных дополнительных услуг.

На транспортном уровне предусмотрено три типа сетевого сервиса. Сервис типа А предоставляет сетевые соединения с приемлемым для пользователей количеством необнаруживаемых ошибок и приемлемой частотой сообщений об обнаруженных ошибках. Сервис типа В отличается приемлемым количеством необнаруживаемых ошибок, но неприемлемой частотой сообщений об обнаруженных ошибках. Наконец, сервис типа С предоставляет сетевые соединения с количеством необнаруженных ошибок, неприемлемым для сеансового уровня.

Возникает вопрос: а для чего вообще нужны классы сервиса с неприемлемыми количествами ошибок? Ответ состоит в том, что для установки многих сетевых соединений необходимы дополнительные протоколы, обеспечивающие обнаружение и устранение ошибок на достаточном для нормальной работы уровне, и на транс­портном уровне такой сервис просто не нужен.

Транспортный уровень, тем не менее, предоставляет программистам возможность писать программы для прикладного уровня в самых различных сетях, не обращая внимания на то, надежна ли передача по этим сетям или нет. Некоторые называют три верхних уровня модели OSI "пользователями транспортного уровня", а четыре нижних — "поставщиками транспортного уровня".

Существует пять классов сервиса транспортного протокола. Они указаны в таблице 4.1.

Таблица 4.1.

Классы сервиса транспортного протокола.

Класс

Наименование

Тип

0

Простой

А

1

Устранение основных ошибок

В

2

Мультиплексирование

А

3

Обнаружение ошибок и мультиплексирование

В

4

Обнаружение и устранение ошибок

С

Класс 0, известный как телекс, представляет собой сервис с самым низким качеством. В этом классе сервиса предусматривается, что управление потоком данных осуществляет сетевой уровень (под транспортным уровнем). Транспортный уровень разрывает соединение, когда аналогичную операцию выполняет сетевой уровень. Сервис класса 1 был разработан СС1ТТ для стандарта X.25 на сети с коммутацией пакетов. Он обеспечивает передачу срочных данных, однако управление потоком все равно осуществляется на сетевом уровне.

Класс 2 — это модифицированный класс 0. Уровень сервиса этого класса базируется на предположении о том, что сеть обладает высокой надежностью. Предлагаемое качество сервиса предусматривает возможность мультиплексирования множества транспортных соединений из одного сетевого соединения. Класс 2 обес­печивает необходимую сборку мультиплексированных пакетов данных, прибываю­щих неупорядоченными.

Класс 3 обеспечивает виды сервиса, предлагаемые уровнями 1 и 2, а в случае обнаружения ошибки предоставляет возможность ресинхронизации для переустанов­ления соединения.

Класс 4 предполагает, что сетевому уровню присуща надежность, поэтому он предлагает обнаружение и устранение ошибок.

Сетевой уровень

На сетевом уровне осуществляется сетевая маршрутизация. Этот уровень — ключ к пониманию того, как функционируют шлюзы к мэйнфреймам IBMи другим компьютерным системам. Протоколы верхних уровней моделиOSIвыдают запросы на передачу пакетов из одной компьютерной системы в другую, а задача сетевого уровня состоит в практической реализации механизма этой передачи.

Сетевой уровень является основой стандарта СС1ТТ Х.25 на глобальные сети.

На сетевом уровне реализован ряд ключевых видов сервиса для транспортного уровня, который в модели OSI расположен непосредственно над сетевым. Сетевой уровень уведомляет транспортный уровень об обнаружении неисправимых ошибок, помогая ему поддерживать качество сервиса и избегать перегрузки сети путем прекращения, если это необходимо, передачи пакетов.

Поскольку в процессе обмена информацией между двумя сетями физические соединения время от времени могут изменяться, сетевой уровень поддерживает виртуальные каналы и обеспечивает правильную сборку пакетов, прибывающих в неправильной последовательности. Работа этого уровня осуществляется с помощью таблиц маршрутизации, которые служат для определения пути продвижения того или иного пакета. Во многих случаях сообщение, состоящее из нескольких пакетов, идет по нескольким путям. Сетевой уровень предоставляет соответствующую "отгрузоч­ную" информацию, необходимую для этих пакетов (например, общее число пакетов в сообщении и порядковый номер каждого из них).

С передачей данных в сетях связана одна очень неприятная проблема: такие характеристики, как длина поля адреса, размер пакета и даже промежуток времени, в течение которого пакету разрешается перемещаться по сети и по истечении которого пакет считается потерянным и выдается запрос на пакет-дубликат, в каждой сети различны. По этой причине управляющая информация, включаемая в пакеты на

сетевом уровне, должна быть достаточной для предотвращения возможных недора­зумений и обеспечения успешной доставки и сборки пакетов.

Как уже упоминалось выше, транспортный и сетевой уровни в значительной степени дублируют друг друга, особенно в плане функций управления потоком данных и контроля ошибок. Главная причина такого дублирования заключается в том, что существует два варианта связи — с установлением соединения(connection-ori-entied) ибез установления соединения(connectionless). Эти варианты связи базируются на разных предположениях относительно надежности сети.

Сеть с установлением соединения работает почти так же, как обычная теле­фонная система. После установления соединения происходит поэтапный обмен информацией, причем в данном случае "собеседники" не обязаны завершать каждое заявление своим именем, именем вызываемого партнера и его адресом, поскольку предполагается, что связь надежна и противоположная сторона полу­чает сообщение без искажений.

В надежной сети с установлением соединения адрес пункта назначения необхо­дим лишь при установлений соединения, а в самих пакетах он не нужен. В такой сети сетевой уровень принимает на себя ответственность за контроль ошибок и управление потоком данных. Кроме того, в его функции входит сборка пакетов.

Сетевой сервис без установления соединения, наоборот, предполагает, что кон­троль ошибок и управление потоком данных осуществляются на транспортном уровне. Адрес пункта назначения необходимо указывать в каждом пакете, а соблю­дение очередности пакетов не гарантируется. Основная идея такого сервиса состоит в том, что важнейшим показателем является скорость передачи, и пользователи должны полагаться на собственные программы контроля ошибок и управления потоком данных, а не на встроенные стандартные средства модели OSI.

Как это всегда бывает, когда члены комитета обсуждают сложный вопрос, был найден компромисс, который не удовлетворил ни одну из сторон. Он состоит в том, что возможности и сервиса с соединением, и сервиса без соединения встроены в оба уровня — сетевой и транспортный. Конечный пользователь может выбрать соответ­ствующие стандартные значения для управляющих полей этих уровней и использо­вать тот метод, который ему больше по душе. Недостаток этого компромисса состоит в излишней избыточности, предусмотренной в обоих уровнях, что означает значи­тельное количество дополнительных информационных битов. При передаче инфор­мации в таком формате по линиям дальней связи это приводит к дополнительным накладным расходам, поскольку процесс передачи занимает больше времени.

Канальный уровень

Канальный уровень можно сравнить со складом и погрузочно-разгрузочным цехом крупного производственного предприятия. "Обязанность" канального уровня — брать пакеты, поступающие с сетевого уровня, и готовить их к передаче (отгрузке), укладывая в кадры (коробки) соответствующего размера. В процессе перемещения информации вверх по уровням модели OSI канальный уровень должен принимать информацию в виде потока битов, поступающих с физического уровня, и произво­дить ее обработку. Этот уровень обязан определять, где начинается и где заканчива­ется передаваемый блок, а также обнаруживать ошибки передачи. Если обнаружена ошибка, канальный уровень должен инициировать соответствующие действия по восстановлению потерянных, искаженных и даже дублированных данных.

Между компьютерными системами может одновременно существовать несколько независимо работающих каналов передачи данных. Канальный уровень обязан обес­печить отсутствие перекрытия этих каналов и предотвратить возможное искажение данных. Канальный уровень инициализирует канал с соответствующим уровнем на компьютере, с которым будет обмениваться данными. Он должен обеспечить син­хронизацию обеих машин и использование в них одинаковых схем кодирования и декодирования.

Поскольку управление потоком и контроль ошибок также входят в функции канального уровня, то он отслеживает получаемые кадры и ведет статистические записи. По завершении передачи информации пользователем канальный уровень проверяет, все ли данные приняты правильно, а затем закрывает канал.

Контроль ошибок на канальном уровне.Для выполнения этой функции на каналь­ном уровне применяется метод автоматического запроса повторной передачи (ARQ—AutomaticRepeatRequest). В зависимости от типа протокола, который работает на канальном уровне, для контроля ошибок используется одна из трех разновидностей этого метода. ARQ с остановкой и ожиданием — это метод, при котором компьютер передает кадр информации, а затем ожидает получения кода подтверждения приема (АСК —acknowledgment), который показывает, что кадр принят правильно. Если выявлена ошибка, то принимающая станция передаст код неподтверждения приема (NAK—negativeacknowledgment), и передающая станция повторяет передачу.

При использовании метода непрерывного ARQ с возвратом на Nстанция принимает несколько кадров (в зависимости от используемого протокола), а затем отвечает выдачей АСК илиNAKс указанием кадра, который содержит ошибку. Если станция передка один за другим семь кадров и в четвертом кадре выявлена ошибка, то передающая станция ответит на NAK повторной передачей кадров с 4-го по 7-й.

Метод непрерывного ARQ с избирательным повторением представляет собой модификацию предыдущего варианта ARQ. Принимающая станция записывает все принимаемые кадры по порядку в специальный буфер, а затем отвечает, что такой-то кадр (скажем, номер 4) содержит ошибку. Сохраняя все остальные кадры в буфере, принимающая станция передает NAK. Передающая станция повторно передает только кадр, содержавший ошибку (т.е. номер 4). Принимающая станция вновь собирает пакеты в нужном порядке (с 1-го по 7-й) и обрабатывает информацию.

Основные протоколы канального уровня.Канальный уровень содержит ряд прото­колов, которые разработаны комитетомIEEE802. Для того чтобы понять, как работает этот уровень — ключевой в моделиOSI, — нужно иметь некоторое представление о деятельности упомянутого комитета.

Физический уровень

Физический уровень модели OSI — наименее противоречивый, так как включает международные стандарты на аппаратуру, уже вошедшие в обиход. По сути дела, единственная реальная проблема на этом уровне заключается в том, как ISOсобирается учитывать вновь разрабатываемые стандарты на аппаратуру. Методы передачи данных становятся все более и более скоростными, появляются новые интерфейсы с дополнительными функциями контроля ошибок. В связи с этим возникает вопрос: будут ли добавлены к модели OSI новые стандарты или же физический уровень останется без изменений? Суд еще не вынес свой вердикт, поэтому предсказать реакциюISOсейчас не представляется возможным.

Для физического уровня определен очень подробный список рекомендованных к употреблению соединителей. Здесь упомянуты, к примеру, 25-контактные разъемы для интерфейсов RS-232C, 34-контактные разъемы для широкополосных модемов спецификацииV.35 СС1ТТ и 15-контактные разъемы для интерфейсов общедоступ­ных сетей передачи данных, определенных в рекомендациях СС1ТТ Х.20, X.21, Х.22 и т.д. Кроме того, регламентируются допустимые электрические характеристики, в частности RS-232C.RS-449.RS-410 и V.35 СС1ТТ.

Физический уровень может обеспечивать как асинхронную (последовательную) передачу, которая используется для многих персональных компьютеров и в некото­рых недорогих ЛВС, так и синхронный режим, который применяется для некоторых мэйнфреймов и мини-компьютеров.

Поскольку подкомитеты ISOиIEEEпоследние несколько лет работают в тесном контакте, не удивительно, что во многих стандартах на ЛВС используются определе­ния, предложенные на физическом уровне модели OSI. На базе физического уровня различные подкомитетыIEEEразрабатывают подробные описания реального физи­ческого оборудования, которое передает сетевую информацию в виде электрических сигналов: требования к применяемым кабельным системам, разъемам и соединителям.

На физическом уровне модели OSI определяются такие важнейшие компоненты сети, как тип коаксиального кабеля для одноканальной передачи при скорости 10 Мбит/с. Сюда включено принятое в стандарте IEEE802.3 определение более тонкого коаксиального кабеляcheapemet. К физическому уровню будет добавлено и включенное в стандартIEEE802.3 определение одноканальной передачи данных по кабелю на витых парах со скоростью 10 Мбит/с.

К средствам, определенным на физическом уровне, также относятся волоконно-оптические кабели и витые пары, применяемые в самых различных ЛВС. В некоторых сетях, например стандарта Token-RingNetworkфирмыIBM, используются неэкра­нированные витые пары, а в сетях других типов — экранированные. Упомянутым подкомитетом, кроме того, были разработаны спецификации различных типов коак­сиальных кабелей для широкополосных ЛВС различных типов.

На физическом уровне модели OSI, кроме того, должна быть определена схема кодирования, которой компьютер пользуется для представления двоичных значений с целью их передачи по каналу связи. В стандарте Ethernet, как и во многих других локальных сетях, используется манчестерское кодирование. В манчестерском коди­ровании отрицательное напряжение в течение первой половины такта передачи с переходом на положительное напряжение во втором полутакте означает единицу, а положительное напряжение с переходом на отрицательное — нуль. Таким образом, в каждом такте передачи имеется переход с отрицательного на положительное напряжение или наоборот.

Итак, физический уровень отвечает за тип физической среды, тип передачи, метод кодирования и скорость передачи данных для различных типов локальных сетей. К его функциям, кроме того, относится установление физического соединения между двумя коммуникационными устройствами, формирование сигнала и обеспе­чение синхронизации этих устройств. Тактовые генераторы обоих устройств должны работать синхронно, иначе передаваемая информация не будет расшифрована и прочитана.

В таблице 4.2. представлено описание четырех нижних уровней модели OSI. Особо следует отметить избыточность, предусмотренную в модели OSI для связи с установ­лением соединения и связи без установления соединения.

Таблица 4.2.

Четыре нижних уровня модели OSI.

Транспортный уровень

Определение транспортного сервиса

Транспортный протокол с установлением соединения

Сетевой уровень

Сетевой сервис без установления соединения

Канальный уровень

Управление логическим каналом

Неквитируемый сервис без установления соединения

Квитируемый сервис без установления соединения

Физический уровень

CSMA/CD

Коаксиальный кабель для одноканальной передачи Коаксиальный кабель для широкополосной передачи

Неэкранированная витая пара (1Мбит/с) 10ВазеТ(10Мбит/с)

Маркерная шина Коаксиальный кабель для широкополосной передачи

Маркерное кольцо Экранированная витая пара

Волоконно-оптический кабель

Соседние файлы в предмете Дипломная работа (подготовка и защита)